This EIP proposes a standard extension to ERC-20 tokens that enables issuers to apply an updatable multiplier to the UI (user interface) amount of tokens. This allows for efficient representation of stock splits, without requiring actual token minting or transfers. The extension provides a cosmetic layer that modifies how token balances are displayed to users while maintaining the underlying token economics.
Current ERC-20 implementations lack an efficient mechanism to handle real-world asset scenarios such as stock splits: When a company performs a 2-for-1 stock split, all shareholders should see their holdings double. Currently, this requires minting new tokens to all holders, which is gas-intensive and operationally complex. Moreover, the internal accounting in DeFi protocols would break from such a split.
The inability to efficiently handle this scenario limits the adoption of tokenized real-world assets (RWAs) on Ethereum. This EIP addresses these limitations by introducing a multiplier mechanism that adjusts the displayed balance without altering the actual token supply.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.
Compliant contracts MUST implement the IScaledUIAmount interface:
interface IScaledUIAmount {
// Emitted when the UI multiplier is updated
event UIMultiplierUpdated(uint256 oldMultiplier, uint256 newMultiplier, uint256 effectiveAtTimestamp);
// OPTIONAL: Emitted during a token transfer with the UI-adjusted amount
event TransferWithUIAmount(address indexed from, address indexed to, uint256 amount, uint256 uiAmount);
// Returns the current UI multiplier
// Multiplier is represented with 18 decimals (1e18 = 1.0)
function uiMultiplier() external view returns (uint256);
}
Note: How the multiplier is updated is an implementation detail left to the token issuer. The reference implementation below shows one approach using a setUIMultiplier function with delayed effectiveness.
Contracts MAY implement the IScaledUIAmountConversion extension for on-chain conversion helpers:
interface IScaledUIAmountConversion {
// Converts a raw token amount to UI amount
function toUIAmount(uint256 rawAmount) external view returns (uint256);
// Converts a UI amount to raw token amount
function fromUIAmount(uint256 uiAmount) external view returns (uint256);
}
Contracts MAY implement the IScaledUIAmountBalances extension for on-chain UI balance queries:
interface IScaledUIAmountBalances {
// Returns the UI-adjusted balance of an account
function balanceOfUI(address account) external view returns (uint256);
// Returns the UI-adjusted total supply
function totalSupplyUI() external view returns (uint256);
}
Compliant contracts MUST implement ERC-165 and return true when queried for the IScaledUIAmount interface ID.
Contracts implementing optional extensions MUST also return true for their respective interface IDs.
The interface identifiers are:
IScaledUIAmount: 0xa60bf13dIScaledUIAmountConversion: 0xTBDIScaledUIAmountBalances: 0xd890fd71ERC-165 Support: Compliant contracts MUST implement ERC-165 interface detection.
Multiplier Precision: The UI multiplier MUST use 18 decimal places for precision (1e18 represents a multiplier of 1.0).
Backwards Compatibility: The standard ERC-20 functions (balanceOf, transfer, transferFrom, etc.) MUST continue to work with raw amounts.
Event Emission: The UIMultiplierUpdated event MUST be emitted whenever the multiplier is changed.
The following implementation includes the core interface and all optional extensions:
contract ScaledUIToken is
ERC20,
ERC165,
IScaledUIAmount,
IScaledUIAmountConversion,
IScaledUIAmountBalances,
Ownable
{
uint256 private constant MULTIPLIER_DECIMALS = 1e18;
uint256 private _uiMultiplier = MULTIPLIER_DECIMALS; // Initially 1.0
uint256 public _nextUiMultiplier = MULTIPLIER_DECIMALS;
uint256 public _nextUiMultiplierEffectiveAt = 0;
constructor(string memory name, string memory symbol) ERC20(name, symbol) {}
// ERC-165 interface detection
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return
interfaceId == type(IScaledUIAmount).interfaceId ||
interfaceId == type(IScaledUIAmountConversion).interfaceId ||
interfaceId == type(IScaledUIAmountBalances).interfaceId ||
super.supportsInterface(interfaceId);
}
// ============ Core Interface ============
function uiMultiplier() public view override returns (uint256) {
uint256 currentTime = block.timestamp;
if (currentTime >= _nextUiMultiplierEffectiveAt) {
return _nextUiMultiplier;
} else {
return _uiMultiplier;
}
}
// Implementation-specific: How the multiplier is updated
function setUIMultiplier(uint256 newMultiplier, uint256 effectiveAtTimestamp) external onlyOwner {
require(newMultiplier > 0, "Multiplier must be positive");
uint256 currentTime = block.timestamp;
require(effectiveAtTimestamp > currentTime, "Effective At must be in the future");
if (currentTime > _nextUiMultiplierEffectiveAt) {
uint256 oldMultiplier = _nextUiMultiplier;
_uiMultiplier = oldMultiplier;
_nextUiMultiplier = newMultiplier;
_nextUiMultiplierEffectiveAt = effectiveAtTimestamp;
emit UIMultiplierUpdated(oldMultiplier, newMultiplier, effectiveAtTimestamp);
} else {
uint256 oldMultiplier = _uiMultiplier;
_nextUiMultiplier = newMultiplier;
_nextUiMultiplierEffectiveAt = effectiveAtTimestamp;
emit UIMultiplierUpdated(oldMultiplier, newMultiplier, effectiveAtTimestamp);
}
}
// ============ Optional: Conversion Extension ============
function toUIAmount(uint256 rawAmount) public view override returns (uint256) {
uint256 currentTime = block.timestamp;
if (currentTime >= _nextUiMultiplierEffectiveAt) {
return (rawAmount * _nextUiMultiplier) / MULTIPLIER_DECIMALS;
} else {
return (rawAmount * _uiMultiplier) / MULTIPLIER_DECIMALS;
}
}
function fromUIAmount(uint256 uiAmount) public view override returns (uint256) {
uint256 currentTime = block.timestamp;
if (currentTime >= _nextUiMultiplierEffectiveAt) {
return (uiAmount * MULTIPLIER_DECIMALS) / _nextUiMultiplier;
} else {
return (uiAmount * MULTIPLIER_DECIMALS) / _uiMultiplier;
}
}
// ============ Optional: Balances Extension ============
function balanceOfUI(address account) public view override returns (uint256) {
return toUIAmount(balanceOf(account));
}
function totalSupplyUI() public view override returns (uint256) {
return toUIAmount(totalSupply());
}
// ============ Optional: TransferWithUIAmount Event ============
function _update(address from, address to, uint256 amount) internal virtual override {
super._update(from, to, amount);
uint256 uiAmount = toUIAmount(amount);
emit TransferWithUIAmount(from, to, amount, uiAmount);
}
}
Design Decisions:
Separate UI Functions: Rather than modifying the core ERC-20 functions, we provide separate UI-specific functions. This ensures backward compatibility and allows integrators to opt-in to the UI scaling feature.
18 Decimal Precision: Using 18 decimals for the multiplier provides sufficient precision for most use cases while aligning with Ethereum's standard decimal representation.
No Automatic Updates: The multiplier must be explicitly set by authorized parties, giving issuers full control over when and how adjustments are made.
Raw Amount Preservation: All actual token operations continue to use raw amounts, ensuring that the multiplier is purely a display feature and doesn't affect the underlying token economics.
Optional Extensions: Following the pattern established by ERC-721 and ERC-1155, helper functions like toUIAmount, fromUIAmount, balanceOfUI, and totalSupplyUI are defined in separate optional interfaces. The TransferWithUIAmount event is defined in the core interface as optional since events do not affect interface IDs. This keeps the core interface minimal while allowing contracts to opt-in to additional on-chain functionality. Integrators can detect support for these extensions using ERC-165 interface detection.
Alternative Approaches Considered:
Rebasing Tokens: While rebasing tokens adjust supply automatically, they create complexity for integrators and can break composability with DeFi protocols.
Wrapper Tokens: Creating wrapper tokens for each adjustment event adds unnecessary complexity and gas costs.
Index/Exchange Rate Tokens confer similar advantages to the proposed Scaled UI approach, but is ultimately less intuitive and requires more calculations on the UI layers.
Off-chain Solutions: Purely off-chain solutions lack standardization and require trust in centralized providers.


This EIP is fully backwards compatible with ERC-20. Existing ERC-20 functions continue to work as expected, and the UI scaling features are opt-in through additional functions.
Example test scenarios:
Initial Multiplier Test:
Verify that initial multiplier is 1.0 (1e18)
Confirm balanceOf equals balanceOfUI initially
Stock Split Test:
Set multiplier to 2.0 (2e18) for 2-for-1 split
Verify UI balance is double the raw balance
Confirm conversion functions work correctly
Multiplier Manipulation
Unauthorized changes to the UI multiplier could mislead users about their holdings
Implementations MUST use robust access control mechanisms
The setUIMultiplier function MUST be restricted to authorized addresses (e.g., contract owner or a designated role).
Integer Overflow
Risk of overflow when applying the multiplier
Use SafeMath or Solidity 0.8.0+ automatic overflow protection
User Confusion
Clear communication is essential when UI amounts differ from raw amounts
Integrators MUST clearly indicate when displaying UI-adjusted balances
Oracle Dependency
For automated multiplier updates, the system may depend on oracles
Oracle failures or manipulations could affect displayed balances
Overflow Protection: Implementations MUST handle potential overflow when applying the multiplier.
Wallets supporting this standard should:
Check if a token implements IScaledUIAmount interface using ERC-165
Optionally check for IScaledUIAmountBalances extension for on-chain balance queries
Display both raw and UI amounts, clearly labeled
Compute UI balance off-chain using balanceOf() and uiMultiplier(), or use balanceOfUI() if the extension is supported
Handle transfers using raw amounts (standard ERC-20 functions)
Example JavaScript integration:
const MULTIPLIER_DECIMALS = BigInt(1e18);
// Interface IDs for ERC-165 detection
const ISCALED_UI_AMOUNT_ID = "0xa60bf13d";
const ISCALED_UI_BALANCES_ID = "0xd890fd71";
// Off-chain conversion functions
function toUIAmount(rawAmount, multiplier) {
return (BigInt(rawAmount) * BigInt(multiplier)) / MULTIPLIER_DECIMALS;
}
function fromUIAmount(uiAmount, multiplier) {
return (BigInt(uiAmount) * MULTIPLIER_DECIMALS) / BigInt(multiplier);
}
async function displayBalance(tokenAddress, userAddress) {
const token = new ethers.Contract(tokenAddress, ScaledUIAmountABI, provider);
// Check if core scaled UI is supported
const supportsScaledUI = await token.supportsInterface(ISCALED_UI_AMOUNT_ID);
if (!supportsScaledUI) {
// Fall back to standard ERC-20
const balance = await token.balanceOf(userAddress);
return {
display: formatUnits(balance, decimals),
raw: formatUnits(balance, decimals),
multiplier: "1.0"
};
}
// Check if optional balances extension is supported
const supportsBalancesExt = await token.supportsInterface(ISCALED_UI_BALANCES_ID);
const rawBalance = await token.balanceOf(userAddress);
const multiplier = await token.uiMultiplier();
// Use on-chain balanceOfUI if available, otherwise compute off-chain
const uiBalance = supportsBalancesExt
? await token.balanceOfUI(userAddress)
: toUIAmount(rawBalance, multiplier);
return {
display: formatUnits(uiBalance, decimals),
raw: formatUnits(rawBalance, decimals),
multiplier: formatUnits(multiplier, 18)
};
}
Exchanges should:
Store and track the multiplier for each supported token
Display UI amounts in user interfaces
Use raw amounts for all internal accounting
Provide clear documentation about the scaling mechanism
Example implementation:
const MULTIPLIER_DECIMALS = BigInt(1e18);
class ScaledTokenHandler {
// Off-chain conversion functions
toUIAmount(rawAmount, multiplier) {
return (BigInt(rawAmount) * BigInt(multiplier)) / MULTIPLIER_DECIMALS;
}
fromUIAmount(uiAmount, multiplier) {
return (BigInt(uiAmount) * MULTIPLIER_DECIMALS) / BigInt(multiplier);
}
async processDeposit(tokenAddress, amount, isUIAmount) {
const token = new ethers.Contract(tokenAddress, ScaledUIAmountABI, provider);
let rawAmount;
if (isUIAmount && await this.supportsScaledUI(tokenAddress)) {
const multiplier = await token.uiMultiplier();
rawAmount = this.fromUIAmount(amount, multiplier);
} else {
rawAmount = amount;
}
// Process deposit with raw amount
return this.recordDeposit(tokenAddress, rawAmount);
}
async getDisplayBalance(tokenAddress, userAddress) {
const token = new ethers.Contract(tokenAddress, ScaledUIAmountABI, provider);
const rawBalance = await this.getInternalBalance(userAddress, tokenAddress);
if (await this.supportsScaledUI(tokenAddress)) {
const multiplier = await token.uiMultiplier();
return this.toUIAmount(rawBalance, multiplier);
}
return rawBalance;
}
}
DeFi protocols should:
Continue using raw amounts for all protocol operations
Provide UI helpers for displaying adjusted amounts
Emit events with both raw and UI amounts where relevant
Document clearly which amounts are used in calculations
Copyright and related rights waived via CC0.